

Driver Operator Course Fire Ground Hydraulics PRE-COURSEWORK

Study Guide I

To be completed and brought to Session I Failure to comply will disqualify the candidate from the Driver Operator Course

DO NOT USE A CALCULATOR!

Answers can be found in Hydraulics Section of the Drill Manual.
Basic Math answers you need to find on your own.
1. Nozzle Pressure (NP) + Total Friction Loss (TFL) =
2. The Friction Loss Rate (FLR) of fire hose can be determined by the formula $FLR = 2Q^2$. In this formula, $Q = \phantom{AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA$
3. List in order of importance, the facts that a pump operator needs in order to determine Pump Pressure (PP):
a
b
C
d
e
f
g
4. The Nozzle Pressure for a hand line with a smooth bore tip is
5. The Nozzle Pressure for deluge sets, monitor nozzles or a water tower equipped with a smooth bore tip is
6. The Nozzle Pressure for all adjustable or fog nozzles is
7. The Nozzle Pressure for foam application is

8. When pumping to a hose line used for an interior attack and the gpm setting is not known, you should use as your maximum gpm flow.
9. When pumping to a hose line used for an exterior attack and the gpm setting is not known, you should use as your maximum gpm flow.
10. When the gpm setting and use of the attack line are both unknown, you should pump to the for that nozzle.
11. The formula 30d²√NP is used to calculate
12. The square root used for calculating the gpm of a hand held straight tip is and that number is based on psi.
13. The square root used for calculating the gpm of a straight tip used on a hose control or monitor is and that number is based on psi.
14. GPM flows for handheld smooth bore tip 1/4" to 3/8" are rounded to the nearest gpm.
15. GPM flows for handheld smooth bore tips $\frac{1}{2}$ " to 1 $\frac{1}{4}$ " are rounded to the nearest gpm.
16. GPM flows for smooth bore tips used on appliances 1 ¼" to 2" are rounded to the nearest gpm.
17. With a given flow through fire hose the smaller the diameter of the hose, the amount of friction loss.
18. The maximum Pump Pressure for synthetic double jacket fire hose (attack line) is psi.
19. The maximum Pump Pressure for 2 ½" high pressure double jacket fire hose is psi.
20. The Equivalent Flow (EF) conversion for ¾" hose is; 1" hose is; 1 ¾" hose is; 1 ¾" hose is; and 4" hose is
21. After the EF is calculated, it should be rounded off to the nearest
22. Length (L) is calculated by dividing the total length of hose in the lay by
23. Water weighs per gallon and requires psi to raise this amount 1 foot. The number used to calculate Gravity Gain or Gravity Loss on the fire ground is psi.
24. Gravity Gain (GG) is from the Pump Pressure while Gravity Loss (GL) is to the Pump Pressure.

- 25. The initial Pump Pressure for all hand lines is _____ + ____
- 26. The initial Pump Pressure for elevated master streams is _____ psi.
- 27. The initial Pump Pressure for Sprinkler and Standpipe Systems is _____ psi.
- 28. Convert the following fractions into decimals:

Example: $\frac{1}{2} = .50$

29. Solve the following problems:

$$30 \times 1 \frac{1}{2} \times 9 = ____$$
 $30 \times 1 \frac{3}{4} \times 9 = ____$

30. Solve the following problems:

$$600 \times .4 =$$

$$1100 \times .5 =$$
 $30 \times 3.6 =$